

Evolution of The Biological Pump (alternative ocean carbon facts in a fake World) Andy Ridgwell

University of California – Riverside University of Bristol

Outline

munum

Ng Pg	K	J	Т	Р	С	D	S	0	Cn	n				
Cenozoic	Me	sozoic			Paleozoic						Neoprot.	Mesoprot.	Paleoproterozoic	
Phanerozoic												Proteroz	oic	Archean

Outline

Archean

Phanerozoic

Proterozoic

There has never been so much biological pumping!

Most primary production EVER!

Many more trophic levels than during the Obama-ian geological Period! Hadean Dems left behind NO BIOLOGICAL CYCLING OF CARBON IN THE OCEAN! SAD!

NO COLLUSION between phytoplankton and zooplankton! Witch hunt!

Make the ocean biological pump great again!

Ng Pg	K	J	Т	Р	C	D	S	0	Cr	n				
Cenozoic	Me	sozoic			Pa	aleozoic					Neoprot.	Mesoprot.	Paleoproterozoic	
			Phane	erozoic								Proteroz	oic	Archean

ocean circulation,

Ng Pg	ĸ	J		P C	, D	5	0	Cm				
Cenozoic	Me	sozoic			Paleozoic				Neoprot.	Mesoprot.	Paleoproterozoic	
			Phane	erozoic						Proteroz	oic	Archean

Ng Py	n	J		Γ	U U	U	3	U	4				
Cenozoic	Me	esozoic			Pa	aleozoic				Neoprot.	Mesoprot.	Paleoproterozoic	
			Phane	erozoic							Proteroz	oic	Archean

Archean

Background

Phanerozoic

Proterozoic

Ng Pg	K	J	Т	Р	С	D	S	0	Cn				
Cenozoic	Me	sozoic			Pa	leozoic				Neoprot.	Mesoprot.	Paleoproterozoic	
Phanerozoic											Proteroz	oic	Archean

'ECOGEM' size-structured plankton ecological model [Ward et al., 2018 (GMD)].

Can define *n* phytoplankton and *m* zooplankton (and/or mixotrophs).

Traits scale with the master variable, cell size.

Each plankton has 'quotas' for C, N, P, Fe, so variable elemental stoichiometry possible (just C and P used here).

'Standard' functional type ecosystem model grazing formulation (with size preference).

'ECOGEM' size-structured plankton ecological model [Ward et al., 2018 (GMD)].

Can define *n* phytoplankton and *m* zooplankton (and/or mixotrophs).

Here:

0-8 phytoplankton size possible classes 0-8 zooplankton size possible classes

i.e. making no *a priori* assumptions about any particular ecosystem structure corresponding to any particular past geological interval.

(Already 16 plankton maximum × 3 cellular 'quotas' == 48 ocean tracers, hence low resolution ocean model advantage.)

Origins ...

origin of photosystems I and II

Origins ...

Origins ...

- == 19.0 μm

The Force awakens ... ???

- 0 == no plankton $1 == 0.6 \mu m$
- $2 == 1.9 \ \mu m$
- $3 == 6.0 \ \mu m$
- $4 == 19.0 \ \mu m$
- 5 == ...

The Force awakens – (I) planktonic habitat (small cell size)

The Force awakens – (I) planktonic habitat (small cell size)

The Force awakens – (II) planktonic habitat (large size range)

The Force awakens – (II) planktonic habitat (large size range)

The Force awakens – grazing?

The Force awakens – grazing?

The Force awakens – grazing?

The Force awakens – animals (larger grazers)

The Force awakens – animals (larger grazers)

The Force awakens – animals (larger grazers)

$|O_3^- \rightarrow |^-$ reduction [fast] $|^- \rightarrow |O_3^-$ reoxidation [slow]

 IO_3^- is incorporated into carbonates

 IO_3

IO₃⁻

 $O_3 \rightarrow c$ reduction [fast] efficient biological pump $\rightarrow [O_3]$ reoxidation [slow] no biological pump I/Ca I/Ca \mathbf{IO}_3^-

 IO_3^- is incorporated into carbonates

$|O_3^- \rightarrow |^-$ reduction [fast] $|^- \rightarrow |O_3^-$ reoxidation [slow]

 IO_{3}^{-} is incorporated into carbonates

Wanyi, L., A. Ridgwell, E. Thomas, D.S. Hardisty, G. Luo, T.J. Algeo, M.R. Saltzman, B.C. Gill, Y.Shen, H-F. Ling, C.T. Edwards, M.T. Whalen, X. Zhou, K.M. Gutchess, L. Jin, R.E.M. Rickaby, H.C. Jenkyns, T.W. Lyons, T.M. Lenton, L.R. Kump, and Z. Lu1, Late inception of a resiliently oxygenated upper ocean, Science DOI: 10.1126/science.aar5372 (2018).

% occurrence of carbonate in ophiolite suites

Major changes in plankton assembledge

Spatial distribution of carrying capacity (ballasting) coefficients calculated using geographically weighted regression analysis for CaCO₃.

Wilson et al. [2012]

30

Conclusions/perspectives

What is the relationship between changes in the biological pump and climate? (or controlled by weathering/outgassing?)

Did changes in the biological pump guide diatom evolution? (or controlled by long-term cooling?)

What can we say about ecosystem stability and resilance, including in the future?

Paleoproterozoic

2000

Time (Ma)

Archean

3000

2500

3500

Are there, and are there important; feedbacks and interactions between plankton evolution and ecosystem complexity, and the marine environment (esp. nutrient and oxygen cycles)? ('co-evolution of life and the Planet') How to we reconstruct/constrain the ancient state of the biological pump? (new proxies?)

olankton assemblage Animals! (metzoans

European Research Council

Established by the European Commission

University of BRISTOL

Pg	K	J	Т	Р	С	D	S	0	0	Cm				
nozoic	– – – - Ме	sozoic-			— — Р а	l e ozoic	·		_		Neoprot.	-Mesoprot	-Paleoproterozoic -	
Phanerozoic												Proteroz	oic	Archean

Ng Pg

Cenozoic

